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The diphenyl-ansa-zirconocene complex 2 adds HB(C6F5)2 at
the CNC double bond of its pendent Cp-allyl functional group to
yield 3. During 3 days at room temperature the –B(C6F5)2 group
takes part in an electrophilic substitution reaction at the
adjacent Cp-ring to form 5 with formation of one equivalent of
benzene. Complex 5 was characterized by X-ray diffraction

Abstraction of a s-alkyl ligand from zirconocene complexes
RCp2ZrR2 by strong Lewis acids such as e.g. B(C6F5)3 to generate
[RCp2ZrR+] cations constitutes a major activation pathway in
homogeneous Ziegler–Natta catalysis.1 In the literature, examples
of such s-ligand abstractions are so numerous, that alternative
competing reaction pathways of the RCp2ZrR2/B(C6F5)3 systems
may become underestimated. Addition reactions of B(C6F5)3 to p-
ligands at zirconium have been described.2,3 There are even a few
examples known where B(C6F5)3 has added to a Cp ligand at
zirconium leaving an adjacent s-ligand untouched,4 although these
rare cases have admittedly involved sterically very demanding s-
ligand environments. We have now found a system where a
strongly electrophilic boron Lewis acid has avoided abstracting a
simple s-phenyl group at zirconium in favour of entering into a
reaction sequence that is initiated by electrophilic attack at the
framework of a substituted h5-cyclopentadienyl p-ligand.

Treatment of the allyl-functionalized ansa-zirconocene di-
chloride (1)5 with two molar equivalents of phenyl lithium in ether
gave the corresponding diphenyl zirconocene complex 2 (96%
isolated). Subsequent treatment with HB(C6F5)2

6 resulted in a
selective hydroboration reaction of the pendent a-olefin moiety to
give 3. The bifunctional product shows three 13C NMR signals of
the connecting trimethylene unit (C6–C8: d 32.3, 26.9, and 31.8)
and a 11B NMR resonance at d 79.2, which is typical of
tricoordinate boron of a RB(C6F5)2 unit [corresponding 19F NMR
signals at d 2129.7 (o), 2147.5 (p), and 2160.9 (m)]. Complex 3
is not stable for a prolonged time at room temperature. During 3
days it reacted further with liberation of one equivalent of benzene
to yield 5a (89% isolated).7

Complex 5a was characterized by X-ray diffraction. In the
crystal it features a slightly strained Me2Si-bridged ansa-zircono-
cene system with typical general structural parameters [averaged
proximal Zr–C(Cp) distances (Zr–C9/C10/C13) 2.459 Å; (Zr–C1/
C2/C5) 2.428 Å; distal Zr–C(Cp) distances (Zr–C11/C12) 2.550 Å,

(Zr–C3/C4) 2.537 Å; angle C1–Si–C9 93.81(9)°]. The most
noteworthy structural feature is the presence of a newly formed B–
C(sp2) bond between the boron atom and its adjacent Cp–ring (B–
C3: 1.627(3) Å, angle C3–B–C8 106.7(2)°). The B(C6F5)2 group
has become part of a substituted borata-tetrahydroindenyl-type
ligand (see Fig. 1). Only a single s-C6H5 ligand has remained
bonded to zirconium (Zr–C14: 2.203(2) Å) with the phenyl plane
being conformationally oriented in the major s-ligand plane of the
bent metallocene framework. The other s-coordination site at Zr
has become occupied by an ortho-fluorine centre from the C6F5

substituent at boron (C14–Zr–F23: 113.0(1)°) that is axially
oriented at the half-chair shaped newly formed six-ring heterocycle
(q C6–C7–C8–B: 66.9(2)°). The resulting (C)F–Zr bond length
(Zr–F23: 2.250(1) Å) is one of the shortest encountered in such a
situation.8 The corresponding C–(mF) bond (C23–F23 1.410(2) Å)
is markedly elongated relative to the three remaining C6F5 ortho C–
F bonds (Dd > 0.05 Å). The C23–F23–Zr angle in complex 5a
amounts to 142.8(1)°.

The low temperature NMR spectra have revealed an analogous
structure of 5a in solution. The 13C NMR spectrum shows three
CH2 resonances of the newly formed anellated heterocycle at d
27.8, 22.8, and 24.3 (C6–C8). The low temperature 19F NMR
spectrum features a total of 10 different resonances: the equatorially
oriented C6F5 ring, whose B–C(aryl) rotation is “frozen” at 203 K,
shows resonances at d 2131.2/2132.1 (o), d 2160.0 (p) and d
2162.8/2164.6 (m). The other C6F5 ring is locked into a rigid
orientation by the presence of the strong (C)F–Zr interaction.
Consequently, we have observed a pair of typically differentiated
19F NMR o-(C)F signals for this ring at d2126.2 and d2175.4 (m-
F)2,8 in addition to signals at d 2156.8 (p) and d 2155.6/2164.2
(m). The low temperature 19F NMR spectra have also revealed the
presence of a minor conformational isomer (5b) at < ca. 280 K,
that does not show the characteristic (C)F–Zr interaction. We
assume that it is formed by equilibration between the two possible
half-chair conformations of the Cp-anellated six-membered hetero-
cyclic framework (see Scheme 2).

Complex 5 adds one equivalent of PMe3 to form the adduct 6 as
a single isomer (ca. 90% isolated).9 The 11B NMR spectrum of 6
features a typical tetracoordinated borate resonance at d213.0 and

† X-ray crystal structure analyses.

Scheme 1 i) + PhLi, 0 °C, Et2O, – LiCl, 96% yield; ii) + HB(C6F5)2, toluene,
r.t.; iii+iv) toluene, 3d, r.t., –C6H6, 89% yield; v) + PMe3, toluene, r.t.

Fig. 1 Molecular structure of compound 5a.
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a 31P NMR signal of the [Zr]–PMe3 unit at d29.4. Below 213 K the
rotation of both C6F5 rings at boron is slow on the NMR time scale
[19F NMR: d 2105.0/2110.0 (o), 2157.4 (p), 2162.6/2162.7 (m
of ring A), d 2120.7/129.8 (o), 2157.8 (p), 2162.8/2164.2 (m of
ring B).

We must assume that the strongly Lewis acidic –B(C6F5)2 group
in the bifunctional diphenylzirconocene complex 3 undergoes an
intramolecular addition to its adjacent substituted Cp ring system10

to form the reactive intermediate 4 (see Scheme 1). Addition of the
–B(C6F5)2 functional group from the outside consequently results
in an orientation of the remaining ipso-(Cp)C–H vector towards the
central [Zr]Ph2 moiety, thus enabling one of the zirconium bound
phenyl groups to act as an internal base. Deprotonation with
formation of one equivalent of benzene then reforms the (substi-
tuted) h5-cyclopentadienyl p-ligand system to yield the observed
product 5. Our study has shown that the addition of a strongly
electrophilic borane to a Zr-coordinated cyclopentadienide can
successfully compete with or even be favoured over the ubiquitous
s-ligand abstraction reaction. We will see whether electrophilic
attack at such nucleophilic p-ligand systems may follow similar
selectivity rules as they were previously established for the
complementary addition of nucleophilic reagents to the p-ligands
of strongly electrophilic transition metal complexes (the “Davies,
Green, Mingos rules”).11
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